Home
Trees
Indices
Help
PyGeometry
[
hide private
]
[
frames
] |
no frames
]
[
Module Hierarchy
|
Class Hierarchy
]
Class Hierarchy
geometry.constants.GeometryConstants
geometry.yaml.Representation
geometry.yaml.SE3_m44
geometry.yaml.TSE3_bt
geometry.yaml.se3_m44
object
:
The most base type
exceptions.BaseException
:
Common base class for all exceptions
exceptions.Exception
:
Common base class for all non-exit exceptions.
geometry.manifolds.exceptions.DoesNotBelong
:
Exception thrown when a point does not belong to a certain manifold *M*.
geometry.manifolds.differentiable_manifold.DifferentiableManifold
:
This is the base class for differentiable manifolds.
geometry.manifolds.matrix_lie_group.MatrixLieGroup
:
This is the base class for matrix Lie groups.
geometry.manifolds.special_euclidean_group.SE_group
:
This is the Special Euclidean group SE(n) describing roto-translations of Euclidean space.
geometry.manifolds.special_orthogonal_group.SO_group
:
This is the Special Orthogonal group SO(n) describing rotations of Euclidean space; implemented for n=2,3.
geometry.manifolds.translation_group.Tran
:
The translation subgroup of SE(n).
geometry.manifolds.matrix_lie_group_tangent.MatrixLieGroupTangent
:
This class represents the tangent bundle of a matrix Lie group using a tuble (base, v0), where v0 is in the algebra.
geometry.manifolds.matrix_linear_space.MatrixLinearSpace
geometry.manifolds.euclidean.Euclidean
:
This is the usual Euclidean space of finite dimension; this is mostly used for debugging.
geometry.manifolds.matrix_lie_algebra.MatrixLieAlgebra
:
This is the base class for Matrix Lie Algebra.
geometry.manifolds.special_euclidean_algebra.se_algebra
:
This is the Lie algebra se(n) for the Special Euclidean group SE(n).
geometry.manifolds.special_orthogonal_algebra.so_algebra
:
This is the Lie algebra of skew-symmetric matrices so(n), for the Special Orthogonal group SO(n).
geometry.manifolds.translation_algebra.tran
:
lie algebra for translation
geometry.manifolds.todo.moebius.Moebius
:
INCOMPLETE - The Moebius strip -- still to be implemented.
geometry.manifolds.product_manifold.ProductManifold
geometry.manifolds.differentiable_manifold.RandomManifold
:
This is the base class for manifolds that have the ability to sample random points.
geometry.manifolds.sphere.Sphere
:
These are hyperspheres of unit radius.
geometry.manifolds.sphere.Sphere1
geometry.manifolds.tangent_bundle.TangentBundle
:
This class represents the tangent bundle of a generic manifold using a tuple (base, vel) where vel is tangent at base.
geometry.manifolds.torus.Torus
geometry.manifolds.group.Group
geometry.manifolds.matrix_lie_group.MatrixLieGroup
:
This is the base class for matrix Lie groups.
geometry.manifolds.special_euclidean_group.SE_group
:
This is the Special Euclidean group SE(n) describing roto-translations of Euclidean space.
geometry.manifolds.special_orthogonal_group.SO_group
:
This is the Special Orthogonal group SO(n) describing rotations of Euclidean space; implemented for n=2,3.
geometry.manifolds.translation_group.Tran
:
The translation subgroup of SE(n).
tuple
:
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable's items
geometry.manifolds.differentiable_manifold.DifferentiableManifold.Embedding
:
Embedding(A, B, A_to_B, B_to_A, steps, type, desc)
geometry.manifolds.differentiable_manifold.DifferentiableManifold.Isomorphism
:
Isomorphism(A, B, A_to_B, B_to_A, steps, type, desc)
type
:
type(object) -> the object's type type(name, bases, dict) -> a new type
abc.ABCMeta
:
Metaclass for defining Abstract Base Classes (ABCs).
Home
Trees
Indices
Help
PyGeometry
Generated by Epydoc 3.0.1 on Wed Feb 22 20:39:21 2012
http://epydoc.sourceforge.net