| Home | Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
__package__ =
|
|||
|
|||
Returns a direction distant from both *s* and *-s*. :param s: :type s: ``direction`` :rtype: ``direction`` |
Returns any axis orthogonal to *s* (not necessarily random). :param s: :type s: ``direction`` :rtype: ``direction`` |
Checks that two vectors are orthogonal. :param s: :type s: ``array[K],K>=2`` :param v: :type v: ``array[K]`` |
Returns the axis to use when any will do.
For example, the identity is represented by
a rotation of 0 degrees around *any* axis. If an *(axis,angle)*
representation is requested, the axis will be given by
*default_axis()*.
:rtype: ``direction``
|
Returns an axis orthogonal to the one returned
by :py:func:`default_axis`.
Use this when you need a couple of arbitrary orthogonal axes.
:rtype: ``direction``
|
Checks that every column has unit length. :param X: :type X: ``array[KxN],K>0,N>0`` |
Returns the geodesic distances on the sphere from a set of
points *S* to a given point *s*.
:param s:
:type s: ``direction``
:param S:
:type S: ``array[3xK],directions``
:rtype: ``array[K](>=0,<=pi)``
|
Returns the radius of the given directions distribution.
The radius is defined as the minimum *r* such that there exists a
point *s* in *S* such that all distances are within *r* from *s*.
.. math:: \textsf{radius} = \min \{ r | \exists s :
\forall x \in S : d(s,x) <= r \}
:param S:
:type S: ``directions``
:rtype: ``float,>=0,<=pi``
|
Returns the geodesic distance between two points on the sphere. :param s2: :type s2: ``array[K],unit_length`` :param s1: :type s1: ``array[K],unit_length`` :rtype: ``float,>=0,<=pi`` |
Normalizes the entries in *x* in the interval :math:`[-pi,pi)`. :param x: :type x: ``array[N]`` :rtype: ``array[N](>=-pi,<pi)`` |
:param x: :type x: ``float`` :rtype: ``>=-pi,<pi`` |
:param S: :type S: ``array[KxN],K>=2`` :rtype: ``array[KxN]`` |
Generates a random direction in :math:`\sphere^{\ndim-1}`.
Currently only implemented for 2D and 3D.
:param ndim:
:type ndim: ``(2|3),K``
:rtype: ``array[K],unit_length``
|
Returns a set of random directions. :param ndim: :type ndim: ``2|3`` :param N: :type N: ``int,>0,N`` :rtype: ``array[3xN]`` |
Returns a random distribution of points in :math:`\sphere^{\ndim-1}`.
within a certain radius from the point *center*.
The points will be distributed uniformly in that area of the sphere.
If *center* is not passed, it will be a random direction.
:param ndim:
:type ndim: ``(2|3),K``
:param num_points:
:type num_points: ``int,>0``
:param radius:
:type radius: ``number,>0,<=pi``
:param center:
:type center: ``None|array[K],unit_length``
:rtype: ``array[KxN],directions``
|
Returns a random axis orthogonal to *s*
(only implemented for circle and sphere).
:param s:
:type s: ``array[K],unit_length,(K=2|K=3)``
:rtype: ``array[K],unit_length``
|
Spherical interpolation between two points on a hypersphere. :param s2: :type s2: ``array[K],unit_length`` :param s1: :type s1: ``array[K],unit_length`` :param t: :type t: ``number,>=0,<=1`` |
Rearranges the directions in *S* in a better order for visualization.
In 2D, sorts the directions using their angle.
In 3D, it tries to do a pleasant elicoidal arrangement
with **num_around** spires.
:param S:
:type S: ``array[KxN],(K=2|K=3),directions``
:rtype: ``array[KxN],directions``
|
Returns the area of a spherical cap on the unit sphere of the given radius. See figure at http://mathworld.wolfram.com/SphericalCap.html |
Returns the radius of a spherical cap of the given area. See http://www.springerlink.com/content/3521h167300g7v62/ |
Checks that the value is a 1D vector with unit length in the 2 norm. :param x: :type x: ``array[N],N>0`` |
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Feb 22 20:39:22 2012 | http://epydoc.sourceforge.net |