Home | Trees | Indices | Help |
|
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
__package__ =
|
|
Returns a direction distant from both *s* and *-s*. :param s: :type s: ``direction`` :rtype: ``direction`` |
Returns any axis orthogonal to *s* (not necessarily random). :param s: :type s: ``direction`` :rtype: ``direction`` |
Checks that two vectors are orthogonal. :param s: :type s: ``array[K],K>=2`` :param v: :type v: ``array[K]`` |
Returns the axis to use when any will do. For example, the identity is represented by a rotation of 0 degrees around *any* axis. If an *(axis,angle)* representation is requested, the axis will be given by *default_axis()*. :rtype: ``direction`` |
Returns an axis orthogonal to the one returned by :py:func:`default_axis`. Use this when you need a couple of arbitrary orthogonal axes. :rtype: ``direction`` |
Checks that every column has unit length. :param X: :type X: ``array[KxN],K>0,N>0`` |
Returns the geodesic distances on the sphere from a set of points *S* to a given point *s*. :param s: :type s: ``direction`` :param S: :type S: ``array[3xK],directions`` :rtype: ``array[K](>=0,<=pi)`` |
Returns the radius of the given directions distribution. The radius is defined as the minimum *r* such that there exists a point *s* in *S* such that all distances are within *r* from *s*. .. math:: \textsf{radius} = \min \{ r | \exists s : \forall x \in S : d(s,x) <= r \} :param S: :type S: ``directions`` :rtype: ``float,>=0,<=pi`` |
Returns the geodesic distance between two points on the sphere. :param s2: :type s2: ``array[K],unit_length`` :param s1: :type s1: ``array[K],unit_length`` :rtype: ``float,>=0,<=pi`` |
Normalizes the entries in *x* in the interval :math:`[-pi,pi)`. :param x: :type x: ``array[N]`` :rtype: ``array[N](>=-pi,<pi)`` |
:param x: :type x: ``float`` :rtype: ``>=-pi,<pi`` |
:param S: :type S: ``array[KxN],K>=2`` :rtype: ``array[KxN]`` |
Generates a random direction in :math:`\sphere^{\ndim-1}`. Currently only implemented for 2D and 3D. :param ndim: :type ndim: ``(2|3),K`` :rtype: ``array[K],unit_length`` |
Returns a set of random directions. :param ndim: :type ndim: ``2|3`` :param N: :type N: ``int,>0,N`` :rtype: ``array[3xN]`` |
Returns a random distribution of points in :math:`\sphere^{\ndim-1}`. within a certain radius from the point *center*. The points will be distributed uniformly in that area of the sphere. If *center* is not passed, it will be a random direction. :param ndim: :type ndim: ``(2|3),K`` :param num_points: :type num_points: ``int,>0`` :param radius: :type radius: ``number,>0,<=pi`` :param center: :type center: ``None|array[K],unit_length`` :rtype: ``array[KxN],directions`` |
Returns a random axis orthogonal to *s* (only implemented for circle and sphere). :param s: :type s: ``array[K],unit_length,(K=2|K=3)`` :rtype: ``array[K],unit_length`` |
Spherical interpolation between two points on a hypersphere. :param s2: :type s2: ``array[K],unit_length`` :param s1: :type s1: ``array[K],unit_length`` :param t: :type t: ``number,>=0,<=1`` |
Rearranges the directions in *S* in a better order for visualization. In 2D, sorts the directions using their angle. In 3D, it tries to do a pleasant elicoidal arrangement with **num_around** spires. :param S: :type S: ``array[KxN],(K=2|K=3),directions`` :rtype: ``array[KxN],directions`` |
Returns the area of a spherical cap on the unit sphere of the given radius. See figure at http://mathworld.wolfram.com/SphericalCap.html |
Returns the radius of a spherical cap of the given area. See http://www.springerlink.com/content/3521h167300g7v62/ |
Checks that the value is a 1D vector with unit length in the 2 norm. :param x: :type x: ``array[N],N>0`` |
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Feb 22 20:39:22 2012 | http://epydoc.sourceforge.net |