Package geometry :: Module mds_algos
[hide private]
[frames] | no frames]

Module mds_algos

source code

Functions [hide private]
 
best_embedding_on_sphere(C, ndim, embed=<function inner_product_embedding at 0x24d37d0>)
:param ndim: :type ndim: ``int,>0,K``
source code
 
double_center(P) source code
 
euclidean_distances(S)
Computes the euclidean distance matrix for the given points.
source code
 
inner_product_embedding(C, ndim)
:param ndim: :type ndim: ``int,>1,K``
source code
 
inner_product_embedding_randomized(C, ndim)
Best embedding of inner product matrix based on randomized projections.
source code
 
inner_product_embedding_slow(C, ndim)
:param ndim: :type ndim: ``int,>0,K``
source code
 
mds(D, ndim, embed=<function inner_product_embedding at 0x24d37d0>)
:param ndim: :type ndim: ``K,int,>=1``
source code
 
mds_randomized(D, ndim)
MDS based on randomized projections.
source code
 
place(references, distances)
:param distances: :type distances: ``array[N](>=0)``
source code
 
spherical_mds(C, ndim, embed=<function inner_product_embedding at 0x24d37d0>)
:param ndim: :type ndim: ``int,>0,K``
source code
 
truncated_svd_randomized(M, k)
Truncated SVD based on randomized projections.
source code
Variables [hide private]
  __package__ = 'geometry'
Function Details [hide private]

best_embedding_on_sphere(C, ndim, embed=<function inner_product_embedding at 0x24d37d0>)

source code 

:param ndim: :type ndim: ``int,>0,K``

:param C: :type C: ``array[NxN]``

:rtype: ``array[KxN],directions``

euclidean_distances(S)

source code 

Computes the euclidean distance matrix for the given points.

:param S: :type S: ``array[KxN]``

:rtype: ``array[NxN](>=0)``

inner_product_embedding(C, ndim)

source code 

:param ndim: :type ndim: ``int,>1,K``

:param C: :type C: ``array[NxN]``

:rtype: ``array[KxN]``

inner_product_embedding_randomized(C, ndim)

source code 

       Best embedding of inner product matrix based on 
       randomized projections. 
   


:param ndim: 
:type ndim:  ``int,>0,K``

:param C: 
:type C:  ``array[NxN]``

:rtype:  ``array[KxN]``

inner_product_embedding_slow(C, ndim)

source code 

:param ndim: :type ndim: ``int,>0,K``

:param C: :type C: ``array[NxN]``

:rtype: ``array[KxN]``

mds(D, ndim, embed=<function inner_product_embedding at 0x24d37d0>)

source code 

:param ndim: :type ndim: ``K,int,>=1``

:param D: :type D: ``array[MxM](>=0)``

:rtype: ``array[KxM]``

mds_randomized(D, ndim)

source code 

MDS based on randomized projections.

:param ndim: :type ndim: ``K,int,>=1``

:param D: :type D: ``array[MxM](>=0)``

:rtype: ``array[KxM]``

place(references, distances)

source code 

:param distances: :type distances: ``array[N](>=0)``

:param references: :type references: ``array[KxN]``

spherical_mds(C, ndim, embed=<function inner_product_embedding at 0x24d37d0>)

source code 

:param ndim: :type ndim: ``int,>0,K``

:param C: :type C: ``array[NxN]``

:rtype: ``array[KxN],directions``