Home | Trees | Indices | Help |
|
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
__package__ =
|
|
:param ndim: :type ndim: ``int,>0,K`` :param C: :type C: ``array[NxN]`` :rtype: ``array[KxN],directions`` |
Computes the euclidean distance matrix for the given points. :param S: :type S: ``array[KxN]`` :rtype: ``array[NxN](>=0)`` |
:param ndim: :type ndim: ``int,>1,K`` :param C: :type C: ``array[NxN]`` :rtype: ``array[KxN]`` |
Best embedding of inner product matrix based on randomized projections. :param ndim: :type ndim: ``int,>0,K`` :param C: :type C: ``array[NxN]`` :rtype: ``array[KxN]`` |
:param ndim: :type ndim: ``int,>0,K`` :param C: :type C: ``array[NxN]`` :rtype: ``array[KxN]`` |
:param ndim: :type ndim: ``K,int,>=1`` :param D: :type D: ``array[MxM](>=0)`` :rtype: ``array[KxM]`` |
MDS based on randomized projections. :param ndim: :type ndim: ``K,int,>=1`` :param D: :type D: ``array[MxM](>=0)`` :rtype: ``array[KxM]`` |
:param distances: :type distances: ``array[N](>=0)`` :param references: :type references: ``array[KxN]`` |
:param ndim: :type ndim: ``int,>0,K`` :param C: :type C: ``array[NxN]`` :rtype: ``array[KxN],directions`` |
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Feb 22 20:39:22 2012 | http://epydoc.sourceforge.net |